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Extinction limits and the lean flammability limit of non-adiabatic stretched premixed
methane–air flames are investigated numerically with detailed chemistry and two
different Planck mean absorption coefficient models. Attention is paid to the combined
effect of radiative heat loss and stretch at low stretch rate. It is found that for a
mixture at an equivalence ratio lower than the standard lean flammability limit, a
moderate stretch can strengthen the combustion and allow burning. The flame is
extinguished at a high stretch rate due to stretch and is quenched at a low stretch rate
due to radiation loss. A O-shaped curve of flame temperature versus stretch rate with
two distinct extinction limits, a radiation extinction limit and a stretch extinction limit
respectively on the left- and right-hand sides, is obtained. A C-shaped curve showing
the flammability limit of the stretched methane–air flame is obtained by plotting these
two extinction limits in the mixture strength coordinate. A good agreement is shown
on comparing the predicted results with the experimental data. For equivalence ratio
larger than a critical value, it is found that the O-shaped temperature curve opens up
in the middle of the stable branch, so that the stable branch divides into two stable
flame branches; a weak flame branch and a normal flame branch. The weak flame
can survive between the radiation extinction limit and the opening point (jump limit)
while the normal flame branch can survive from its stretch extinction limit to zero
stretch rate. Finally, a G-shaped curve showing both extinction limits and jump limits
of stretched methane–air flames is presented. It is found that the critical equivalence
ratio for opening up corresponds to the standard flammability limit measured in
microgravity. Furthermore, the results show that the flammability limit (inferior limit)
of the stretched methane–air flame is lower than the standard flammability limit
because flames are strengthened by a moderate stretch at Lewis number less than unity.

1. Introduction
The structures and extinction limits of premixed flames have been of primary in-

terest to the combustion community. Understanding of the structure and extinction
mechanism of premixed flames is frequently based on the study of one-dimensional
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planar propagating flames and counterflow premixed flames. It has been well estab-
lished that both radiative heat loss and flame stretch can greatly affect the structure
and extinction limit of laminar flames. For one-dimensional planar propagating
flames, extensive experimental and theoretical studies (Egerton & Thabet 1952;
Spalding 1957; Lakshmisha, Paul & Mukunda 1990) have shown that extinction can
be caused by radiation heat loss. On the other hand, experimental studies of counter-
flow premixed flames has revealed that they can be extinguished only by increasing
the stretch rate (Tsuji 1983). The combined effect of radiation heat loss and stretch on
the flame structure and extinction have also been extensively studied by investigating
counterflow diffusion flames and premixed flames. For diffusion flames, Tien (1986),
Liu & Rogg (1991) and Chao, Law & Tien (1990) examined the effects of radiation
heat loss on flame structure at low stretch rates. Tien’s study showed that there exists
a radiation extinction limit at low stretch, in addition to the stretch induced extinction
limit.

Compared to diffusion flames, few studies have been conducted on the structure
and extinction of premixed flames at low stretch rate. Although several theoretical and
experimental studies (Sohrab & Law 1984; Liu, Ye & Sohrab 1986) have been carried
out to investigate the effects of radiation on stretched flames, the combined effects of
radiative heat loss and stretch at low stretch rate have not been particularly addressed.
Based on their theoretical study, Sohrab & Law (1984) concluded that radiative heat
loss is unimportant in affecting flame extinction compared to flame stretch. In the
experimental study of Liu et al. (1986), the stretch rate was fixed at 10 s−1 due to exper-
imental difficulties of achieving lower stretch rates. Therefore, the detailed flame struc-
ture and extinction mechanism associated with the interaction between the radiation
effect and the stretch effect at low stretch rate were not examined in their experiments.

Recently, the determination of the absolute flammability limit in microgravity has
received great attention (Ronney 1988). Understanding of the extinction mechanism
at low stretch rate and the relation between the counterflow flame and the planar
propagating flame is crucial to the accurate determination of the flammability limit
from the results of stretched flames. Experimental measurements (Ronney & Wach-
man 1985) and numerical predictions (Sibulkin & Frendi 1990) using spherically
propagating flames in the absence of gravity showed that radiation heat loss produces
a lean flammability limit at low stretch rates. On the other hand, to understand
the essence of the extinction mechanism of counterflow flames at low stretch rates,
a numerical study based on the one-step overall reaction and constant transport
properties has been conducted by Platt & Tien (1990). Their results showed that
there also exists a radiation extinction limit at low stretch rate. A recent experiment
in microgravity (Maruta et al. 1996) clearly showed that a premixed flame near the
flammability limit is extinguished at two different stretch rates. A numerical study
conducted by the same group (Guo et al. 1996) with detailed chemistry and transport
properties confirmed that flame extinction at low stretch rate is attributed to radiative
heat loss but extinction at large stretch rate is caused by the stretch effect which has
been extensively studied previously (Tsuji 1983; Sohrab & Law 1984). However, the
studies by Maruta et al. and Guo et al. are confined to the extinction of flames near
the lean limit. Flame structures and extinction phenomena at higher equivalence ratio
have not been examined. Furthermore, the relation between the flammability limit
determined from counterflow premixed flames and that of planar propagating flames
still remains unknown. To obtain the flammability limit in the zero stretch limit from
the results of stretched flames, a linear extrapolation method has been proposed by
Law & Egolfopoulos (1990). However, recent theoretical and numerical studies (Tien
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Figure 1. Schematic graph of the computation model.

& Matalon 1991; Dixon-Lewis 1990) indicate that the strict linear relation is not
valid. The most important reason for these conflicting results is that the behaviour
of premixed flames at very low stretch rates is not yet properly understood.

One objective of this study is to investigate numerically the flame regimes and
extinction mechanisms of stretched lean methane–air premixed flames with detailed
chemistry at low stretch rate over a wide range of equivalence ratio. The combined
effect of the Lewis number and the radiation heat loss is emphasized. Another
motivation is to ascertain whether the linear extrapolation from the stretch extinction
limits of stretched flames to the flammability limit of zero stretch flames is valid or
not. Comparisons of peak flame temperature and extinction limits between adiabatic
flames and non-adiabatic flames are also made. A radiation distribution function
is introduced to evaluate the quantitative effect of radiative heat loss. Then, the
correlations between peak flame temperature and stretch rate for various equivalence
ratios are presented. Finally, a G-shaped extinction curve is obtained and discussed.

2. Theoretical model
The flame configuration analysed in this study is the axisymmetrical counterflow

laminar premixed flame shown in figure 1. Twin flames are formed near the stagnation
plane of the two opposed methane–air flows. In this study, the distance between the
two burners is fixed at 10 cm for all the calculations except in the comparison of
temperature dips between prediction and experiment in the next section. Only one
half of the domain is solved due to the symmetry of this twin flame configuration. By
making the stagnation point flow approximation (Giovangigli & Smooke 1987; Kee
et al. 1988), the governing equations can be written as

da/dt = 0,

dρ

dt
+

dU

dx
= −2ρG,

L(G) =
d

dx

(
µ

dG

dx

)
− ρG2 + ρ

(
da

dt
+ a2

)
,

CpL(T ) =
d

dx

(
λ

dT

dx

)
−

n∑
k=1

ρYkVkCpk
dT

dx
−

n∑
k=1

hkω̇kMk + q̇r,

L(Yk) = − d

dx
(ρYkVkx) +

n∑
k=1

ω̇kMk,



(1)
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where L(φ) = dφ/dt + Udφ/dx, t is the time, x and r denote the axial and radical
coordinates, u and v are the corresponding components of the velocity, U is the axial
mass flow rate and a is the stretch rate. G is a combined function of the stretch rate
and the stream function; ρ, T and Yk are respectively the mass density, temperature
and mass fraction of kth species; µ, Cpk and Mk denote the mixture viscosity, the
constant-pressure heat capacity and the molecular weight of the kth species; hk , Vkx
and ω̇k are respectively the specific enthalpy, the diffusion velocity in the x-direction
and the molar production rate of the kth species; q̇r is the volumetric radiation heat
loss.

To complete the specification of the problem, the potential boundary conditions
are given as

x = −L; T = TL, Yk = YkL, G = a,

x = 0; dT/dx = 0, dYk/dx = 0, dG/dx = 0, U = 0, a = a0,

}
(2)

where the subscript L represents the data at the burner exit and a0 is the initial stretch
rate at the stagnation plane.

For radiation calculations, the optically thin assumption has been frequently used
in examining the effect of radiation on laminar flames (Liu & Rogg 1991; Sibulkin
& Frendi 1990; Platt & Tien 1990). In this study, the optical thickness

l =

∫ −L
0

kλdx (3)

is evaluated for all the calculations, where kλ is the gas absorption coefficient. The
results show that the maximum optical thickness in the present calculations is less
than 0.048, and in particular at the extinction points the maximum optical thickness
is less than 0.035. Therefore, it should be justifiable to employ the simple optically
thin model in the present calculation of radiative heat loss. To demonstrate the
sensitivity of the numerical results to the radiation properties, two different Planck
mean absorption coefficient models are used to perform the calculations. By assuming
CO2, H2O, CO and CH4 are the most important radiating species, the volumetric
rate of radiation heat loss for the energy equation can be written as

q̇r = −4σKp(T
4 − T 4

∞) , (4)

Kp = PCO2
KCO2

+ PH2OKH2O + PCOKCO + PCH4
KCH4

, (5)

where σ is the Stefan–Boltzmann constant, and T and T∞ are respectively the local
and the ambient temperatures. Kp denotes the Planck mean absorption coefficient
of the mixture, and Pi and Ki are respectively the partial pressure and Planck mean
absorption coefficient of species i. Data for the Planck mean absorption coefficient
of the four radiating species obtained by Tien (1968) and Kuznetsov & Sabelnikov
(1990) are used to perform the calculations and the results are compared. Data given
in Tien (1968) were calculated from the wide-band model and are widely accepted. We
name it ‘radiation model I’. On the other hand, data given in Kuznetsov & Sabelnikov
(1990) were obtained experimentally and give a much lower estimation of the Planck
mean absorption coefficients than radiation model I. We call it ‘radiation model II’
hereafter. Unless otherwise stated, the results presented in the following sections
are calculated using radiation model I. The data for the Planck mean absorption
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Emitting species Ai0 Ai1 Ai2

CH4 10.17015 −7.947312× 10−3 4.342446× 10−7

CO 1.565360 1.483914× 10−2 −2.656035× 10−5

CCO2 32.44420 7.537513× 10−2 −1.535140× 10−4

H2O 68.69480 −1.523490× 10−1 1.417848× 10−4

Ai3 Ai4 Ai5

CH4 1.048611× 10−9 −2.287861× 10−13 0
CO 1.687980× 10−8 −4.674473× 10−12 4.767887× 10−16

CCO2 9.487940× 10−8 −2.509259× 10−11 2.447995× 10−15

H2O −6.620996× 10−8 1.524150× 10−11 1.373456× 10−15

Table 1. Fitting coefficients for the calculation of the Planck mean absorption coefficients of the
emitting species in the temperature range 300–3000 K

coefficients given by Tien are fitted by a polynomial curve

Ki =

5∑
j=0

AijT
j , i = 1, 4. (6)

The coefficients Aij are tabulated in table 1.
The detailed chemical mechanism used in this study is the C1 chemistry presented

by Kee et al. (1985), which includes 58 elementary reactions and 18 reacting species.
Nitrogen is treated as inert here. Transport properties are calculated from the
CHEMKIN database (Kee et al. 1986). The thermal diffusion of H and H2 is also
taken into account.

By using the upwind and central finite difference scheme, the above differential
equations (1) can be approximated by a set of algebraic equations of the form

F(V ) = 0 (7)

at each grid point. Here V is the solution vector of (a, T , Yi, U, G)T . For an
initial estimate V 0 which is sufficiently close to the final solution, the above system
of equations can be solved by a modified damped Newton’s method following the
strategy presented by Smooke (1982). However, this method becomes increasingly
difficult near a turning point such as extinction. In particular, at the turning point the
Jacobian of the system of equations is singular. The usual technique to alleviate this
problem was developed first by Keller (1977) and later applied to flame simulations
by Heinemann, Overholser & Reddien (1980) and Giovangigli & Smooke (1987). The
solution vector V is considered to be a function of a new continuation variable s
which is defined as the normalized arclength ∆s on the temperature and strain rate
plane

∆s = s− s0 = [(T − T0)
2 + (a− a0)

2]1/2. (8)

Here the subscript 0 denotes the initial solution variables. Thus, the overall problem
becomes one of the solution of a new set of equations

H(V , s) = 0 (9)

and the boundary condition of a = a0 in (2) is replaced by the normalization condition

∆s =
dT

ds
[T (s)− T (s0)] +

da

ds
[a(s)− a(s0)]. (10)
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With an initial solution vector of V 0 at s0, a new solution estimate can be obtained
by using

V (s+ δs) = V (s0) +
dV

ds
δs. (11)

Here the Jacobian dV /ds is non-singular.
In theory, this procedure overcomes the singularity problem of the Jacobian.

However, in practice, the new solution estimate from (11) occasionally makes the
computation difficult to converge. Since at the turning point the singular Jacobian
occurs at the strain rate coordinates, (7) is solved by a given stretch rate at the
stagnation plane. However, the Jacobian at the temperature coordinate is not singular
at the turning point. This suggests that the singularity problem could be removed
simply by respectively choosing the strain rate and the stagnation temperature as the
independent continuation variables in the region far from the turning point and in
the region near the turning point. In practice, near the extinction limit, da/ds in (10)
is set to zero; otherwise, dT/ds is set to zero (away from the extinction limit). This
is the strategy used in this work. The present calculations show that these procedures
can proceed smoothly through a whole solution branch.

3. Radiation cooling and temperature dip
Axial temperature profiles of the gaseous mixture of two symmetric counterflow

methane–air premixed flames were measured by Liu et al. (1986). To examine the
effects of radiation cooling and demonstrate the validity of the present theoretical
models, especially the radiation model, a comparison between the measured tempera-
ture and the prediction is made. The boundary conditions used in the calculation are
identical to those of the experiment. The separation distance between burners is 2 cm
here. The velocity at the burner exit plane is kept at the constant value of 20 cm s−1.
The volumetric percentages of methane in air, Ω, are 6.53 and 5.88.

Since the temperature measurement was carried out using a thermocouple of 0.05
mm diameter, to compare the prediction with the experimental data, a radiation cor-
rection of the measured temperature has been made here according to the expression
suggested in Liu et al. (1986):

Tc = Tm +
εσd

2λ
(T 4

m − T 4
∞) , (12)

where ε, d and λ are respectively the coating emissivity, junction diameter and gas
thermal conductivity. Tc and Tm are respectively the corrected temperature and the
measured temperature.

The corrected axial temperature profiles and predicted axial temperature profiles
are compared in figure 2. It can be seen that both the experimental data and the
predicted results display a temperature dip with the minimum for each curve at
the stagnation plane. Since the rate of radiation heat loss is proportional to the
volume fractions of the radiating gases, as shown in figure 2, the magnitude of
this temperature dip increases as the separation distance between the twin flames
increases. As a result, this temperature dip will induce conductive heat loss from
the flame region to the stagnation plane region. Therefore, the radiation cooling
mechanism in this twin premixed flame configuration consists of two parts: a direct
radiation heat loss through gas emitting within and upstream of the reaction zone
and an indirect conduction heat loss due to the existence of the temperature gradient
caused by stronger radiative heat loss downstream of the reaction zone. At higher
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Figure 2. Comparison of axial temperature profiles between experiment and prediction for two
typical methane percentages, Ω, in air: ©, experiment (Liu et al. 1986); ——, radiation model I;
- - - - -, radiation model II.
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Figure 3. Flame temperature profile plotted as a function of stretch rate for Ω = 4.9.

stretch rates, the indirect conduction heat loss plays an important role in flame cooling,
since the reaction zone is very thin and diffusion of emitting species is suppressed
due to the short convection time. At low stretch rates, however, direct radiation heat
loss within and upstream of the reaction zone may become very important since the
flame thickens and the diffusion process becomes dominant. These behaviours will
be discussed in detail in the next Section.

It can be also seen that radiation model II greatly underestimates the effects of
radiation heat loss compared to radiation model I and the experiment. Although
there are some discrepancies between the experimental data and the results predicted
by radiation model I, considering the errors due to the radiation correction of the
experimental data and the use of the simple optically thin assumption, the agreement
is quite good.

4. Extinction mechanism near the lean limit
Figure 3 shows the variation of the flame temperature (maximum temperature) with

stretch rate for methane percentage in air Ω = 4.9 (Φ denotes the equivalence ratio).
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Ω = 4.9, at various stretch rates a (in s−1).

Starting from point a (corresponding to a stretch rate of about 6.0 s−1), the peak flame
temperature increases dramatically with the increase of stretch rate. This increase of
temperature is attributed to the decreased effect of radiation loss (this will be shown
in figure 6) and to the Lewis number effect. Since the Lewis number of a fuel-lean
methane–air mixture is slightly less than unity, an increase of stretch rate causes a
larger energy gain due to the increase of the deficient reactant through diffusion than
the energy loss through conduction. As shown in figure 3, at the stretch rate of 32 s−1

(point b), the peak flame temperature reaches its maximum. With a further increase of
stretch rate, the flame is pushed towards the stagnation plane and chemical reactions
cannot be completed because of the reduced residence time. As a result, the peak
flame temperature decreases and this eventually leads to extinction at point c. This
extinction is caused by the stretch effect, so we call it the ‘stretch extinction’ hereafter
(Maruka et al. 1996; Guo et al. 1996). On the other hand, a decrease of stretch rate
from point a results in a continuous drop of the peak flame temperature. At point
d, a new extinction point emerges. Since this extinction is mainly caused by radiative
heat loss, we name it the ‘radiation extinction limit’, to distinguish it from the stretch
extinction limit mentioned above. As shown in figure 3, the curve of the peak flame
temperature versus the stretch rate is O-shaped. The upper half of the curve, dabc,
represents the stable flame branch which can be observed in the laboratory. On the
other hand, from knowledge of the ‘fold bifurcation’ (Thompson & Stewart 1986),
we know that the lower half of the curve, cd, is the physically unstable flame branch.
Therefore, there exists only one stable flame at each stretch rate between the stretch
and the radiation extinction limits for Ω = 4.9.

To demonstrate the detailed physical process of the extinction, the distributions of
temperature and CO2 mole fraction in the axial direction for Ω = 4.9 are plotted in
figure 4 for three typical stretch rates. At a large stretch rate of 60 s−1, it can be
seen that reaction zone is pushed to the stagnation plane (x = 0). The flame will be
extinguished at a larger stretch rate through incomplete combustion. As the stretch
rate decreases to 10 s−1, the flame moves upstream and thickens. We know that the
radiation heat loss depends primarily on the concentration of the radiating species
(CO2 and H2O) and the temperature. Figure 4 clearly shows that a decrease of stretch
rate causes a dramatic change of the distributions of these parameters. When the
stretch rate further decrease to 1.0 s−1, the increase of radiation heat loss due to
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Figure 5. Flame separation distance plotted as a function of stretch rate for Ω = 4.9 (Φ = 0.491).

the flame thickening and the weakening of the Lewis number effect in enhancing the
combustion both lead a rapid decrease of flame temperature.

The flame separation distance corresponding to figure 3 is shown in figure 5. The
flame position is defined by the location of the maximum CH concentration. It can be
seen that at point a the flame separation distance reaches its maximum. An increase
or decrease of the stretch rate results in a decrease of the flame separation distance.
The increase in flame separation distance with decreasing stretch rate is well known.
However, the decrease of flame separation with decreasing stretch rate is new. The
reason for the decrease of the flame separation distance at low stretch rate is due to
the radiation heat loss. At point a, there is a large temperature dip in the temperature
profile. Hence, as mentioned in the last section, the indirect conduction heat loss
downstream of the reaction zone reduces the flame temperature and causes the flames
to narrow their separation distance. On the other hand, near the extinction point
d, the flame moves almost to the stagnation plane. The flame separation distance
is very small and no temperature dip exists behind the reaction zone. Thus, the
indirect conduction heat loss can become negligible. However, the direct radiation
heat loss within and upstream of the reaction zone becomes increasingly important
as the stretch rate decreases. At the stretch rate of 0.99 s−1, the flame is extinguished
because of incomplete combustion caused by the direct radiation heat loss. Therefore,
the direct mechanisms for stretch extinction and radiation extinction of the stretched
flames are very different, although they share a common phenomenon of incomplete
combustion near the extinction limits.

To quantitatively evaluate the effect of radiation heat loss, a radiation distribution
function is introduced:

fr(x) =

∫ x

−∞
q̇rdx/

∫ 0

−∞
q̇cdx , (13)

where fr(x) is the radiation distribution function, and q̇r and q̇c are respectively the
rate of volumetric radiation heat loss and chemical heat release. Thus the numerator
in (13) denotes the integration of radiation loss from the left-hand boundary to the
location x and the denominator denotes the total chemical heat release rate in the
left half of the domain. Therefore, fr(x) represents the proportion of radiation heat
loss rate on the left-hand side of location x in the total chemical heat release rate,
which we shall call the ‘radiation fraction’. As x approaches zero, fr(0) denotes the
total radiation fraction in the total chemical heat release. The variation of the total
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Figure 6. Radiation fraction, fr(0), plotted as a function of stretch rate for Ω = 4.9 (Φ = 0.491).

radiation fraction with stretch rate for Ω = 4.9 is shown in figure 6. At the stretch
extinction limit (point c), the total radiation fraction is less than 1%. At point a,
where the flame separation distance reaches its maximum, the total radiation fraction
increases to 12%. This radiant heat loss is so high that the flame loses its ability to
propagate upstream. A further decrease of stretch rate results in a decrease of the
flame separation distance (see figure 5) and a dramatic increase of the total radiation
fraction. At the radiation extinction limit (point d), the total rate of radiative heat
loss reaches as much as 25% of the total chemical heat release rate. Therefore, the
stretch extinction and the radiation extinction occur at two different extremes.

The dashed line in figure 6 represents the total radiation heat loss rate. By
comparing figure 6 with figure 5, it can be clearly seen that the total radiation heat
loss rate increases with the increase of the flame separation distance (curve abc in
figure 5). At point a, both the flame separation distance and the total radiation heat
loss rate reach their maximum values. Although a further decrease of the stretch rate
causes an increase of the total radiation fraction, the total radiation heat loss rate
still decreases due to the decrease of the flame separation distance. The increase of
the total radiation fraction with decrease of the stretch rate is partly attributed to
the decrease of the total chemical heat release rate. As the stretch rate goes down,
the mass burning rate decreases and thus leads to a decrease of the chemical heat
release rate, since the chemical heat release rate depends on the mass burning rate.
On the other hand, since the rate of radiation heat loss depends on the volume
and temperature of the emitting species, a decrease of the stretch rate leads to an
increase of the total radiation heat loss rate if the flame separation distance does
not change. To compensate for the decrease of the chemical heat release rate and
to reduce radiation heat loss, the flames have to adjust their location to narrow
their separation. In addition, for methane–air flames, the Lewis number effect plays
an increasingly important role in enhancing chemical reactions as the reaction zone
moves towards the stagnation plane. Therefore, strictly speaking, the emergence of
the radiation extinction limit is the result of the competition between the radiation
effect and the Lewis number effect.

To demonstrate the differences in the distribution of the radiation heat loss rate over
the flame at different stretch rates, variations of the radiation distribution function
and the chemical heat release rate with axial distance are plotted in figure 7. For a
stretch rate of a = 10 s−1, the rate of radiation heat loss upstream of and within the
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reaction zone, which is directly responsible for flame temperature reduction, is less
than 1% of the total chemical heat release rate. Thus, most of the radiation heat loss
occurs downstream of the reaction zone. However, for a stretch rate of a = 1.0 s−1,
radiation heat loss is important both upstream of and within the reaction zone. Thus,
direct radiation heat loss is the mechanism inducing the radiation extinction at low
stretch rate.

Profiles of the peak flame temperature calculated using radiation model I near the
lean flammability limit of counterflow premixed flames are shown in figure 8(a). It
can be seen that each stable flame in the range of percentage of volumetric fuel to air
between 4.23 and 4.6 has two extinction limits: a radiation limit and a stretch limit.
Peak flame temperature profiles calculated using radiation model II are shown in
figure 8(b). Although both the stretch limit and the radiation limit are extended due
to the underestimation of radiation heat loss, these two extinction limits still exist.
Near the lean limit, results of both radiation models show that the peak temperature
curves are O-shaped and there exists only one stable flame at each stretch rate between
the two extinction limits (the upper branch).

5. Flame structure and extinction mechanism away from the lean limit
In order to fully understand the interactions between the radiation effect and the

stretch effect and to establish the connection between the stretched flame and the
planar propagating flame, an investigation of the flame structure and the extinction
mechanism at higher equivalence ratio Φ and low stretch is necessary. A comparison
between the peak flame temperature profiles at fuel percentages 5% and 4.9% is given
in figure 9. For Ω = 4.9 (Φ = 0.491), as described above, there are two extinction
limits and the profile is a closed O-shaped curve. However, for Ω = 5.0 (Φ = 0.501),
the O-shaped curve opens up and becomes ‘mushroom shaped’. As a result, the stable
branch dabc at Ω = 4.9 divides into two branches a′b′c′ and e′d′. As shown in figure
9, all the turning points c′, d′ and e′ are the simple fold bifurcation points. From the
study of the fold bifurcation (Thompson & Stewart 1986), we know that the turning
point is a separation point between the stable branch and the unstable branch. On
the other hand, we also know that a′b′c′ is the temperature curve of the ‘normal’
stable flame, corresponding to curve abc in the case Ω = 4.9. Therefore, branch c′d′
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represents the temperature curve of physically unstable flames and curve d′e′ denotes
the low-temperature physically stable flames. Hereafter, we call curve d′e′ the ‘weak
flame’ branch because its temperature is lower than the ‘normal flame’ (a′b′c′). Again,
curve f′e′ represents another physically unstable flame branch. For a normal flame,
an increase of stretch rate enhances chemical reaction and reduces the convective
residence time. The flame reaches its maximum temperature at point b′ and quenches
at point c′. This behaviour of the flame is the same as that for Ω = 4.9. However,
unlike the case Ω = 4.9, as the stretch rate goes down, the flame temperature does
not decrease significantly but tends towards a constant value. This implies that the
normal flame will not be extinguished as the stretch rate further decreases and point
a′ can be extrapolated to zero stretch rate. Therefore, the normal flame for Ω = 5.0
also has only one limit, the stretch extinction limit. It is only in this case that a normal
flame can be reduced to a planar propagating flame in the limit of zero stretch. For
Ω 6 4.9, the flame is strengthened by the stretch due to the Lewis number effect and
it cannot be extended to the corresponding planar propagating flame.

The low-temperature stable flame (d′e′) exists within the range of stretch rate of the
normal flame. As the stretch rate goes down, radiation extinction occurs at point d′.
On the other hand, as the stretch rate goes up, the flame temperature increases rapidly.
At point e′, the temperature gradient becomes infinite, showing a jump phenomenon.
Since there is no solution for the weak flame as the stretch rate further increases, point
e′ can be defined as a ‘jump limit’, at which the weak flame temperature suddenly
jumps and the weak flame becomes a normal flame instantaneously. In addition, the
unstable branch e′f′ can also be extrapolated to zero stretch rate. Moreover, a′ and f′

at zero stretch rate correspond respectively to the stable and the unstable solutions
of the one-dimensional planar propagating flame.

A comparison of the flame separation distances between the results for Ω = 4.9
and Ω = 5.0 is shown in figure 10. The distinction between these two cases is obvious.
For Ω = 4.9, there exists a maximum flame separation distance. The right half can
be considered as a normal flame branch and the left half is the radiation-controlled
flame branch. These two branches merge at the point of the maximum separation
distance. However, for Ω = 5.0, the flame separation distance of the normal flame
(a′b′c′) increases monotonically with the decrease of the stretch rate. In the limit of
zero stretch, it is expected that the flame separation becomes infinite and the twin
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flames reduce to two independent plane propagating flames. On the other hand, at the
weak flame branch (d′e′), the flame separation distance increases with the increase of
the stretch rate. At jump point e′, the rate of increase of the flame separation distance
becomes infinite, indicating that the weak flame will propagate upstream suddenly.
Unlike the case Ω = 4.9, the normal flame branch does not merge with the weak flame
branch. Even so, at the radiation extinction limit of the weak flame and the stretch
extinction limit of the normal flame, extinction still occurs by way of incomplete
combustion with the flame being pushed to the stagnation plane. At the jump limit,
however, the flames separate at a finite distance and no incomplete combustion occurs.

Figure 11 shows the fraction of total radiation heat loss relative to chemical heat
release. On the normal flame branch (a′b′c′), the radiation fraction increases quickly
with the decrease of stretch rate due to the increase of the flame separation distance.
At point a′, the radiation fraction increases to 25%. On the other hand, at the
radiation extinction limit of the weak flame, the radiation fraction is as high as 27%.
As the stretch rate goes up, the radiation fraction decreases. The reason is that an
increase of the strain rate enhances chemical reaction and results in an increase of the
mass burning rate. At the jump point e′, the radiation fraction reaches its minimum.
This is why the weak flame has enough potential to jump up to the normal flame
branch. It should be noted that although the radiation fractions at point d′ and a′ are
comparable, the extent of radiation heat loss contributing to flame cooling upstream
of the flame zone at point a′ is much larger than that at point d′.

A comparison of the radiation distribution functions and chemical heat release
rate between the normal flame and the weak flame at the same stretch rate is given
in figure 12. For the normal flame, the mass burning rate is very high. Although
the radiation fraction is as high as 20% for the normal flame, the direct radiation
heat loss within and upstream of the reaction zone is only about 1%. Therefore, the
contribution of radiation heat loss to flame cooling is mainly through the indirect
heat conduction. This effect on flame temperature reduction is very weak. However,
for the weak flame, although the radiation fraction is less than that of the normal
flame, the direct radiation heat loss within and upstream of the reaction zone is far
greater than that of the normal flame. This direct radiation heat loss affects the flame
temperature considerably and thus results in a low flame temperature and a narrow
flame separation distance.
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The effect of radiation on flame structure can be easily understood by comparing
the results of the adiabatic flame with those of the non-adiabatic flame. Figures 13(a)
and 13(b) respectively show a comparison of flame temperatures between adiabatic
and non-adiabatic flames calculated using radiation models I and II. In figure 13(a),
it can be clearly seen that there is only one stable flame at each stretch rate for the
adiabatic flame. Radiation affects flame structure dramatically at low stretch rate
while has little impact on the flame temperature at high stretch rate, especially near
the stretch extinction point. Although radiation is greatly underestimated by radiation
model II, figure 13(b) also shows the existence of two stable flames. Therefore, the
conclusion can be drawn that the emergence of a weak stable flame is the result of the
interaction between the radiation effect and the stretch effect at high equivalence ratio.

6. Brief summary
To help understanding of the phenomena described in last two Sections, a brief

summary is given here. We know that the Lewis number of a methane–air mixture is
less than unity. Thus, a moderate stretch will strengthen the flame but a large stretch
will quench it. For an equivalence ratio less than the standard flammability limit,
as can be seen in figure 8, a moderate stretch rates enhances the combustion and
makes the flame stable. A large stretch rate quenches the flame due to stretch-induced
incomplete combustion (stretch extinction). On the other hand, at a sufficiently low
stretch, the increase of radiation heat loss due to flame thickening and the weakening
of the combustion enhancement due to the Lewis number effect also quench the flame
(radiation extinction). These results are shown in figure 8 by the O-shaped isola. This
isola indicates that below the standard lean limit the mixture can be made to burn
by imposing a moderate stretch.

What happens to the flame when the mixture equivalence ratio is higher than the
standard flammability limit? For the one-dimensional propagating flame, we know
that there are two solutions for a given mixture strength, one of which is stable and
the other unstable. For the counterflow flame we also know that there is a stretch
extinction limit at large stretch. The question is what happens at moderate stretch
rates. Figure 9 shows the answer. For Ω = 5.0, the flame branch opens up at the
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middle point (e′) of the upper stable branch. Therefore, the stable branch divides into
two stable flame branches: the weak flame branch on which the flame can survive
from the radiation limit (point d′) to the opening point e′, and the normal flame
branch on which the flame can survive from the stretch extinction limit to zero stretch
rate. In figure 9, e′f′ is an unstable branch. The extrapolations of a′ and f′ to zero
stretch respectively yield the stable and unstable solutions for the one-dimensional
planar propagating flame. Therefore, figure 9 has established a clear relation between
the stretched flame and the one-dimensional planar propagating flame.

7. Comparison with experiment and the extinction curve
The variation of the two extinction limits with the equivalence ratio shown in figure

8 is plotted in figure 14. Numerical calculations are conducted using the two different
radiation models. Experimental data were obtained under the conditions of normal
gravity and microgravity (Maruta et al. 1996; Law et al. 1986). It can be seen that, for
an adiabatic flame, the extinction limit decreases monotonically with the decrease of
the equivalence ratio. However, for a non-adiabatic flame, numerical results obtained
using the two different radiation models show that there are two branches of extinction
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limits. As shown in figure 14, the upper branch is the stretch extinction branch while
the lower branch represents the radiation extinction branch. The merging point of the
two branches denotes the flammability limit of stretched flames. Figure 14 also shows
that radiation heat loss has almost no effect on the stretch extinction limit for an
equivalence ratio larger than 0.5. For equivalence ratios below 0.5, however, radiation
dramatically affects both the stretch extinction limit and the radiation extinction
limits. Since the effect of radiation is underestimated by radiation model II, the
predicted flammability limit of stretched flames is smaller than that calculated by
radiation model I. In addition, the experimental data also show the existence of the
radiation branch. Although there is some discrepancy between the experimental data
and the prediction, considering the use of a simple model of radiation and the effect of
burner diameter in the experiment, the agreement can be considered to be quite good.

A general graph showing both the extinction limits and the jump limits in figures
8 and 9, for stretched methane–air premixed flames is shown in figure 15(a). Since
the graph exhibits a shape similar to the letter G, we name it the ‘G-curve’. On
this G-curve, branches AB and BC are respectively the stretch extinction branch and
radiation extinction branch shown in figure 14. Point B is the flammability limit of
stretched flames (inferior limit). Curve CE represents the radiation limits of normal
flames, showing that a normal flame will not extinguish on the right-hand side of line
CE by radiation as the stretch rate goes down. Curve CF represents the radiation
branch of the weak flame. DG denotes the jump branch from the weak flame to the
normal flame. Simply speaking, the normal flame can exist in the region bounded
by curve ABCE (of course, there is also a right-hand limit on the fuel-rich side). In
region GDCF, the weak flame can co-exist with the normal flame. The radiation
limit of the weak flame decreases with the increase of equivalence ratio. It has its
minimum near the equivalence ratio of 0.85. A further increase of equivalence ratio
results in an increase of the radiation extinction limit. The variation of the jump
limits of the weak flame with the equivalence ratio behaves similarly to that of its
radiation extinction branch.

It should be noted that neither the linear extrapolation of the stretch extinction
branch (AB) nor the linear extrapolation of the radiation extinction branch (BCF) to
the zero stretch rate yields a correct prediction of the standard flammability limit of a
one-dimensional planar propagating flame. Figure 15 shows that only for equivalence
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ratio larger than 0.5, can a stretched flame be extended to zero stretch and reduced
to the planar propagating flame. The experimental study conducted by Ronney
(1988) showed that the standard flammability limit of a methane–air mixture is 0.51.
As shown in figure 15, the present prediction of the flammability limit of a planar
propagating flame is 0.5, which is very close to the experimental value. The G-curve
also shows that the flammability limit of a stretched flame is far less than that of a
one-dimensional planar propagating flame due to the effect of the Lewis number.

The extinction curve obtained by using radiation model II is shown in figure 15(b).
Although there are some quantitative differences in the limits from those given in
figure 15(a), the existence of the G-curve remains unchanged. Therefore, it can be
concluded that the results obtained in this study do not depend on a specific simple
radiation model. Instead, the results correctly reveal the physical phenomena inherent
in stretched premixed flames with radiative heat loss.

8. Conclusion
Flame regimes, extinction limits and the flammability limit of stretched premixed

methane–air flames with radiation heat loss are studied numerically with detailed
chemistry. The present results reproduced well the temperature dip observed experi-
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mentally. Furthermore, the present results clearly show that radiation heat loss has
a significant effect on flame structure and the extinction limit through two different
mechanisms; indirect heat conduction loss downstream of the reaction zone and direct
radiation heat loss within and upstream of the reaction zone. At high stretch rate,
indirect conduction heat loss is the main factor affecting the flame temperature. At
low stretch rate, however, the direct radiation heat loss is the dominant mechanism
for flame extinction.

The results further show that, for an equivalence ratio lower than the standard
flammability limit, the flame temperature profile is O-shaped and there are two
extinction limits for each stable flame; a radiation limit at low stretch rate and a
stretch limit at high stretch rate. The radiation limit is the result of competition
between the radiation effect and the Lewis number effect. The results show that
below the standard flammability limit the mixture can be made to burn by imposing
a moderate stretch for Lewis number less than unity.

It is also found that for an equivalence ratio larger than 0.5, the flame temperature
profile opens up and becomes a mushroom-shaped curve. There are two stable flames,
a normal flame and a weak flame, coexisting at the same stretch rate between the
radiation extinction limit and the jump limit. The normal flame has only one limit,
the stretch extinction limit. The weak flame has two distinct limits; a radiation
extinction limit and a jump limit indicating a sudden change from a weak flame to
a normal flame. The emergence of the weak flame is due to the interaction between
radiation and stretch. A G-shaped curve showing both the extinction limits and
jump limits as well as the flammability of stretched premixed methane–air flames,
is presented. It is shown that although the treatment of radiation heat loss affects
considerably the values of extinction limits, the existence of the G-shaped curve is
physical for stretched premixed flames with radiation heat loss. It is found that the
flammability limit of stretched methane–air premixed flames is far lower than that
of one-dimensional planar propagating flames because the Lewis number is less than
unity. This limit will become narrower with increasing Lewis number. It is also shown
that neither the linear extrapolation of the stretch extinction branch nor the linear
extrapolation of the radiation extinction branch to the zero stretch limit can correctly
predict the flammability limit of the one-dimensional planar propagating flame. The
present results agree well with available experimental data. Although the existence
of the weak flame has not been observed in previous experiments, it is expected that
this finding would be confirmed in future experiments conducted in microgravity.

In a future study, stable regions of the weak flames and the stability analysis of all
the stable solution branches should be addressed.
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